Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Small ; : e2312007, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708799

RESUMEN

Coordinated cell movement is a cardinal feature in tissue organization that highlights the importance of cells working together as a collective unit. Disruptions to this synchronization can have far-reaching pathological consequences, ranging from developmental disorders to tissue repair impairment. Herein, it is shown that metal oxide nanoparticles (NPs), even at low and non-toxic doses (1 and 10 µg mL-1), can perturb the coordinated epithelial cell rotation (CECR) in micropatterned human epithelial cell clusters via distinct nanoparticle-specific mechanisms. Zinc oxide (ZnO) NPs are found to induce significant levels of intracellular reactive oxygen species (ROS) to promote mitogenic activity. Generation of a new localized force field through changes in the cytoskeleton organization and an increase in cell density leads to the arrest of CECR. Conversely, epithelial cell clusters exposed to titanium dioxide (TiO2) NPs maintain their CECR directionality but display suppressed rotational speed in an autophagy-dependent manner. Thus, these findings reveal that nanoparticles can actively hijack the nano-adaptive responses of epithelial cells to disrupt the fundamental mechanics of cooperation and communication in a collective setting.

2.
Adv Healthc Mater ; : e2304529, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38465888

RESUMEN

There is a paradigm shift in biomanufacturing toward continuous bioprocessing but cell-based manufacturing using adherent and suspension cultures, including microcarriers, hydrogel microparticles, and 3D cell aggregates, remains challenging due to the lack of efficient in-line bioprocess monitoring and cell harvesting tools. Herein, a novel label-free microfluidic platform for high throughput (≈50 particles/sec) impedance bioanalysis of biomass, cell viability, and stem cell differentiation at single particle resolution is reported. The device is integrated with a real-time piezo-actuated particle sorter based on user-defined multi-frequency impedance signatures. Biomass profiling of Cytodex-3 microcarriers seeded with adipose-derived mesenchymal stem cells (ADSCs) is first performed to sort well-seeded or confluent microcarriers for downstream culture or harvesting, respectively. Next, impedance-based isolation of microcarriers with osteogenic differentiated ADSCs is demonstrated, which is validated with a twofold increase of calcium content in sorted ADSCs. Impedance profiling of heterogenous ADSCs-encapsulated hydrogel (alginate) microparticles and 3D ADSC aggregate mixtures is also performed to sort particles with high biomass and cell viability to improve cell quality. Overall, the scalable microfluidic platform technology enables in-line sample processing from bioreactors directly and automated analysis of cell quality attributes to maximize cell yield and improve the control of cell quality in continuous cell-based manufacturing.

3.
ACS Nano ; 18(8): 6623-6637, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38348825

RESUMEN

Cell-free RNAs and extracellular vesicles (EVs) are valuable biomarkers in liquid biopsies, but they are prone to preanalytical variabilities such as nonstandardized centrifugation or ex vivo blood degradation. Herein, we report a high-throughput and label-free inertial microfluidic device (ExoArc) for isolation of platelet-free plasma from blood for RNA and EV analysis. Unlike conventional inertial microfluidic devices widely used for cell sorting, a submicrometer size cutoff (500 nm) was achieved which completely removed all leukocytes, RBCs, platelets, and cellular debris based on differential lateral migration induced by Dean vortices. The single-step operation also reduced platelet-associated miRNAs (∼2-fold) compared to centrifugation. We clinically validated ExoArc for plasma miRNA profiling (39 samples) and identified a 7-miRNA panel that detects non-small cell lung cancer with ∼90% sensitivity. ExoArc was also coupled with size exclusion chromatography (SEC) to isolate EVs within 50 min with ∼10-fold higher yield than ultracentrifugation. As a proof-of-concept for EV-based transcriptomics analysis, we performed miRNA analysis in healthy and type 2 diabetes mellitus (T2DM) subjects (n = 3 per group) by coupling ExoArc and ExoArc+SEC with quantitative polymerase chain reaction (RT-qPCR) assay. Among 293 miRNAs detected, plasmas and EVs showed distinct differentially expressed miRNAs in T2DM subjects. We further demonstrated automated in-line EV sorting from low volume culture media for continuous EV monitoring. Overall, the developed ExoArc offers a convenient centrifugation-free workflow to automate plasma and EV isolation for point-of-care diagnostics and quality control in EV manufacturing.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Neoplasias Pulmonares , MicroARNs , Humanos , MicroARNs/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Microfluídica , Neoplasias Pulmonares/metabolismo , Vesículas Extracelulares/metabolismo
4.
Sci Rep ; 13(1): 20521, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993612

RESUMEN

Through extensive multisystem phenotyping, the central aim of Project PICMAN is to correlate metabolic flexibility to measures of cardiometabolic health, including myocardial diastolic dysfunction, coronary and cerebral atherosclerosis, body fat distribution and severity of non-alcoholic fatty liver disease. This cohort will form the basis of larger interventional trials targeting metabolic inflexibility in the prevention of cardiovascular disease. Participants aged 21-72 years with no prior manifest atherosclerotic cardiovascular disease (ASCVD) are being recruited from a preventive cardiology clinic and an existing cohort of non-alcoholic fatty liver disease (NAFLD) in an academic medical centre. A total of 120 patients will be recruited in the pilot phase of this study and followed up for 5 years. Those with 10-year ASCVD risk ≥ 5% as per the QRISK3 calculator are eligible. Those with established diabetes mellitus are excluded. Participants recruited undergo a detailed assessment of health behaviours and physical measurements. Participants also undergo a series of multimodality clinical phenotyping comprising cardiac tests, vascular assessments, metabolic tests, liver and neurovascular testing. Blood samples are also being collected and banked for plasma biomarkers, 'multi-omics analyses' and for generation of induced pluripotent stem cells (iPSC). Extensive evidence points to metabolic dysregulation as an early precursor of cardiovascular disease, particularly in Asia. We hypothesise that quantifiable metabolic inflexibility may be representative of an individual in his/her silent, but high-risk progression towards insulin resistance, diabetes and cardiovascular disease. The platform for interdisciplinary cardiovascular-metabolic-neurovascular diseases (PICMAN) is a pilot, prospective, multi-ethnic cohort study.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Sistema Cardiovascular , Enfermedad del Hígado Graso no Alcohólico , Humanos , Masculino , Femenino , Estudios de Cohortes , Estudios Prospectivos , Factores de Riesgo
5.
Environ Sci Technol ; 57(48): 19223-19235, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37933439

RESUMEN

Insights into how biological systems respond to high- and low-dose acute environmental stressors are a fundamental aspect of exposome research. However, studying the impact of low-level environmental exposure in conventional in vitro settings is challenging. This study employed a three-dimensional (3D) biomimetic microfluidic lung-on-chip (µLOC) platform and RNA-sequencing to examine the effects of two model anthropogenic engineered nanoparticles (NPs): zinc oxide nanoparticles (Nano-ZnO) and copier center nanoparticles (Nano-CCP). The airway epithelium exposed to these NPs exhibited dose-dependent increases in cytotoxicity and barrier dysregulation (dominance of the external exposome). Interestingly, even nontoxic and low-level exposure (10 µg/mL) of the epithelium compartment to Nano-ZnO triggered chemotaxis of lung fibroblasts toward the epithelium. An increase in α smooth muscle actin (α-SMA) expression and contractile activity was also observed in these cells, indicating a bystander-like adaptive response (dominance of internal exposome). Further bioinformatics and network analysis showed that a low-dose Nano-ZnO significantly induced a robust transcriptomic response and upregulated several hub genes associated with the development of lung fibrosis. We propose that Nano-ZnO, even at a no observable effect level (NOEL) dose according to conventional standards, can function as a potent nanostressor to disrupt airway epithelium homeostasis. This leads to a cascade of profibrotic events in a cross-tissue compartment fashion. Our findings offer new insights into the early acute events of respiratory harm associated with environmental NPs exposure, paving the way for better exposomic understanding of this emerging class of anthropogenic nanopollutants.


Asunto(s)
Exposoma , Nanopartículas , Óxido de Zinc , Biomimética , Microfluídica , Nanopartículas/toxicidad , Fibroblastos , Óxido de Zinc/toxicidad
6.
Lab Chip ; 23(19): 4313-4323, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37702123

RESUMEN

The growing interest in regenerative medicine has opened new avenues for novel cell therapies using stem cells. Bone marrow aspirate (BMA) is an important source of stromal mesenchymal stem cells (MSCs). Conventional MSC harvesting from BMA relies on archaic centrifugation methods, often leading to poor yield due to osmotic stress, high centrifugation force, convoluted workflow, and long experimental time (∼2-3 hours). To address these issues, we have developed a scalable microfluidic technology based on deterministic lateral displacement (DLD) for MSC isolation. This passive, label-free cell sorting method capitalizes on the morphological differences between MSCs and blood cells (platelets and RBCs) for effective separation using an inverted L-shaped pillar array. To improve throughput, we developed a novel multi-chip DLD system that can process 2.5 mL of raw BMA in 20 ± 5 minutes, achieving a 2-fold increase in MSC recovery compared to centrifugation methods. Taken together, we envision that the developed DLD platform will enable fast and efficient isolation of MSCs from BMA for effective downstream cell therapy in clinical settings.


Asunto(s)
Médula Ósea , Células Madre Mesenquimatosas , Microfluídica , Células Madre , Plaquetas
7.
J Extracell Vesicles ; 12(8): e12354, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553837

RESUMEN

Extracellular vesicles (EVs) can be produced from red blood cells (RBCs) on a large scale and used to deliver therapeutic payloads efficiently. However, not much is known about the native biological properties of RBCEVs. Here, we demonstrate that RBCEVs are primarily taken up by macrophages and monocytes. This uptake is an active process, mediated mainly by endocytosis. Incubation of CD14+ monocytes with RBCEVs induces their differentiation into macrophages with an Mheme-like phenotype, characterized by upregulation of heme oxygenase-1 (HO-1) and the ATP-binding cassette transporter ABCG1. Moreover, macrophages that take up RBCEVs exhibit a reduction in surface CD86 and decreased secretion of TNF-α under inflammatory stimulation. The upregulation of HO-1 is attributed to heme derived from haemoglobin in RBCEVs. Heme is released from internalized RBCEVs in late endosomes and lysosomes via the heme transporter, HRG1. Consequently, RBCEVs exhibit the ability to attenuate foam cell formation from oxidized low-density lipoproteins (oxLDL)-treated macrophages in vitro and reduce atherosclerotic lesions in ApoE knockout mice on a high-fat diet. In summary, our study reveals the uptake mechanism of RBCEVs and their delivery of heme to macrophages, suggesting the potential application of RBCEVs in the treatment of atherosclerosis.


Asunto(s)
Aterosclerosis , Vesículas Extracelulares , Animales , Ratones , Células Espumosas/metabolismo , Células Espumosas/patología , Hemo/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Eritrocitos/metabolismo , Endocitosis
8.
Lab Chip ; 23(18): 3936-3944, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37584074

RESUMEN

Neutrophils are the most abundant circulating white blood cells and one of their critical functions to eliminate pathogenic threats includes the release of extracellular DNA, also known as neutrophil extracellular traps (NETs), which is dysregulated in many diseases including cancer, type 2 diabetes mellitus and infectious diseases. Currently, conventional methods to quantify the NET formation (NETosis) rely on fluorescence antibody-based NET labelling or circulating NET-associated protein detection by ELISA, which are expensive, laborious, and time-consuming. In this work, we employed a novel "virtual staining" using deep convolutional neural networks (CNNs) to facilitate label-free quantification of NETs trapped in a micropillar array in a microfluidic device. Virtual staining is constructed to establish relations between morphological features in phase contrast images and fluorescence features in Sytox-green (DNA dye) images. We first investigated the effect of different learning rates on model training and optimized the learning rate to achieve the best model which can provide outputs close to Sytox green staining based on various reconstruction metrics (e.g., structural similarity (SSIM) and pixel-wise error (MAE, MSE)). The virtual staining of different NET concentrations was investigated which showed a linear correlation with fluorescent staining. As a proof of concept for clinical testing, the model was used to characterize purified neutrophils treated with NETosis inducers, including lipopolysaccharide (LPS), phorbol 12-myristate 13-acetate (PMA), and calcium ionophore (CaI), and successfully detected different NET profiles for different treatments. Collectively, these results demonstrated the potential of using deep learning for enhanced label-free image analysis of NETs for clinical research, drug discovery and point-of-care testing of diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Trampas Extracelulares , Humanos , Trampas Extracelulares/metabolismo , Microfluídica , Diabetes Mellitus Tipo 2/metabolismo , Neutrófilos/metabolismo , Acetato de Tetradecanoilforbol/farmacología , ADN/metabolismo
9.
ACS Sens ; 8(8): 3136-3145, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37477562

RESUMEN

Urinary tract infection (UTI) diagnosis based on urine culture for bacteriuria analysis is time-consuming and often leads to wastage of hospital resources due to false-positive UTI cases. Direct cellular phenotyping (e.g., RBCs, neutrophils, epithelial cells) of urine samples remains a technical challenge as low cell concentrations, and urine characteristics (conductivities, pH, microbes) can affect the accuracy of cell measurements. In this work, we report a microfluidic inertial-impedance cytometry technique for label-free rapid (<5 min) neutrophil sorting and impedance profiling from urine directly. Based on size-based inertial focusing effects, neutrophils are isolated, concentrated, and resuspended in saline (buffer exchange) to improve consistency in impedance-based single-cell analysis. We first observed that both urine pH and the presence of bacteria can affect neutrophil high-frequency impedance measurements possibly due to changes in nucleus morphology as neutrophils undergo NETosis and phagocytosis, respectively. As a proof-of-concept for clinical testing, we report for the first time, rapid UTI testing based on multiparametric impedance profiling of putative neutrophils (electrical size, membrane properties, and distribution) in urine samples from non-UTI (n = 20) and UTI patients (n = 20). A significant increase in cell count was observed in UTI samples, and biophysical parameters were used to develop a UTI classifier with an area under the receiver operating characteristic curve of 0.84. Overall, the developed platform facilitates rapid culture-free urine screening which can be further developed to assess disease severity in UTI and other urologic diseases based on neutrophil electrical signatures.


Asunto(s)
Bacteriuria , Infecciones Urinarias , Humanos , Impedancia Eléctrica , Microfluídica , Infecciones Urinarias/diagnóstico , Infecciones Urinarias/microbiología , Infecciones Urinarias/orina , Bacteriuria/diagnóstico , Bacteriuria/orina , Urinálisis/métodos
10.
Lab Chip ; 23(5): 1226-1257, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36655549

RESUMEN

Blood tests are considered as standard clinical procedures to screen for markers of diseases and health conditions. However, the complex cellular background (>99.9% RBCs) and biomolecular composition often pose significant technical challenges for accurate blood analysis. An emerging approach for point-of-care blood diagnostics is utilizing "label-free" microfluidic technologies that rely on intrinsic cell properties for blood fractionation and disease detection without any antibody binding. A growing body of clinical evidence has also reported that cellular dysfunction and their biophysical phenotypes are complementary to standard hematoanalyzer analysis (complete blood count) and can provide a more comprehensive health profiling. In this review, we will summarize recent advances in microfluidic label-free separation of different blood cell components including circulating tumor cells, leukocytes, platelets and nanoscale extracellular vesicles. Label-free single cell analysis of intrinsic cell morphology, spectrochemical properties, dielectric parameters and biophysical characteristics as novel blood-based biomarkers will also be presented. Next, we will highlight research efforts that combine label-free microfluidics with machine learning approaches to enhance detection sensitivity and specificity in clinical studies, as well as innovative microfluidic solutions which are capable of fully integrated and label-free blood cell sorting and analysis. Lastly, we will envisage the current challenges and future outlook of label-free microfluidics platforms for high throughput multi-dimensional blood cell analysis to identify non-traditional circulating biomarkers for clinical diagnostics.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Microfluídica/métodos , Separación Celular , Leucocitos , Pruebas Hematológicas , Biomarcadores
11.
Lab Chip ; 23(3): 410-420, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36511820

RESUMEN

Vascular stenosis caused by atherosclerosis instigates activation and aggregation of platelets, eventually resulting in thrombus formation. Although antiplatelet drugs are commonly used to inhibit platelet activation and aggregation, they unfortunately cannot prevent recurrent thrombotic events in patients with atherosclerosis. This is partially due to the limited understanding of the efficacy of antiplatelet drugs in the complex hemodynamic environment of vascular stenosis. Conventional methods for evaluating the efficacy of antiplatelet drugs under stenosis either fail to simulate the hemodynamic environment of vascular stenosis characterized by high shear stress and recirculatory flow or lack spatial resolution in their analytical techniques to statistically identify and characterize platelet aggregates. Here we propose and experimentally demonstrate a method comprising an in vitro 3D stenosis microfluidic chip and an optical time-stretch quantitative phase imaging system for studying the efficacy of antiplatelet drugs under stenosis. Our method simulates the atherogenic flow environment of vascular stenosis while enabling high-resolution and statistical analysis of platelet aggregates. Using our method, we distinguished the efficacy of three antiplatelet drugs, acetylsalicylic acid (ASA), cangrelor, and eptifibatide, for inhibiting platelet aggregation induced by stenosis. Specifically, ASA failed to inhibit stenosis-induced platelet aggregation, while eptifibatide and cangrelor showed high and moderate efficacy, respectively. Furthermore, we demonstrated that the drugs tested also differed in their efficacy for inhibiting platelet aggregation synergistically induced by stenosis and agonists (e.g., adenosine diphosphate, and collagen). Taken together, our method is an effective tool for investigating the efficacy of antiplatelet drugs under vascular stenosis, which could assist the development of optimal pharmacologic strategies for patients with atherosclerosis.


Asunto(s)
Aterosclerosis , Trombosis , Humanos , Inhibidores de Agregación Plaquetaria/farmacología , Eptifibatida/farmacología , Constricción Patológica , Plaquetas , Aspirina/farmacología , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/tratamiento farmacológico , Dispositivos Laboratorio en un Chip
12.
Small ; 18(18): e2104822, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35253966

RESUMEN

The intrinsic biophysical states of neutrophils are associated with immune dysfunctions in diseases. While advanced image-based biophysical flow cytometers can probe cell deformability at high throughput, it is nontrivial to couple different sensing modalities (e.g., electrical) to measure other critical cell attributes including cell viability and membrane integrity. Herein, an "optics-free" impedance-deformability cytometer for multiparametric single cell mechanophenotyping is reported. The microfluidic platform integrates hydrodynamic cell pinching, and multifrequency impedance quantification of cell size, deformability, and membrane impedance (indicative of cell viability and activation). A newly-defined "electrical deformability index" is validated by numerical simulations, and shows strong correlations with the optical cell deformability index of HL-60 experimentally. Human neutrophils treated with various biochemical stimul are further profiled, and distinct differences in multimodal impedance signatures and UMAP analysis are observed. Overall, the integrated cytometer enables label-free cell profiling at throughput of >1000 cells min-1 without any antibodies labeling to facilitate clinical diagnostics.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Impedancia Eléctrica , Citometría de Flujo , Células HL-60 , Humanos , Neutrófilos
13.
BMC Biol ; 20(1): 47, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35164755

RESUMEN

BACKGROUND: Polypoidal choroidal vasculopathy (PCV), a subtype of age-related macular degeneration (AMD), is a global leading cause of vision loss in older populations. Distinct from typical AMD, PCV is characterized by polyp-like dilatation of blood vessels and turbulent blood flow in the choroid of the eye. Gold standard anti-vascular endothelial growth factor (anti-VEGF) therapy often fails to regress polypoidal lesions in patients. Current animal models have also been hampered by their inability to recapitulate such vascular lesions. These underscore the need to identify VEGF-independent pathways in PCV pathogenesis. RESULTS: We cultivated blood outgrowth endothelial cells (BOECs) from PCV patients and normal controls to serve as our experimental disease models. When BOECs were exposed to heterogeneous flow, single-cell transcriptomic analysis revealed that PCV BOECs preferentially adopted migratory-angiogenic cell state, while normal BOECs undertook proinflammatory cell state. PCV BOECs also had a repressed protective response to flow stress by demonstrating lower mitochondrial functions. We uncovered that elevated hyaluronidase-1 in PCV BOECs led to increased degradation of hyaluronan, a major component of glycocalyx that interfaces between flow stress and vascular endothelium. Notably, knockdown of hyaluronidase-1 in PCV BOEC improved mechanosensitivity, as demonstrated by a significant 1.5-fold upregulation of Krüppel-like factor 2 (KLF2) expression, a flow-responsive transcription factor. Activation of KLF2 might in turn modulate PCV BOEC migration. Barrier permeability due to glycocalyx impairment in PCV BOECs was also reversed by hyaluronidase-1 knockdown. Correspondingly, hyaluronidase-1 was detected in PCV patient vitreous humor and plasma samples. CONCLUSIONS: Hyaluronidase-1 inhibition could be a potential therapeutic modality in preserving glycocalyx integrity and endothelial stability in ocular diseases with vascular origin.


Asunto(s)
Hialuronoglucosaminidasa , Degeneración Macular , Anciano , Coroides/irrigación sanguínea , Coroides/patología , Células Endoteliales , Angiografía con Fluoresceína , Glicocálix/patología , Humanos , Hialuronoglucosaminidasa/genética , Hialuronoglucosaminidasa/uso terapéutico , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/patología
14.
Small ; 18(6): e2104470, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34984816

RESUMEN

Extracellular vesicles (EVs) are recognized as next generation diagnostic biomarkers due to their disease-specific biomolecular cargoes and importance in cell-cell communications. A major bottleneck in EV sample preparation is the inefficient and laborious isolation of nanoscale EVs (≈50-200 nm) from endogenous proteins in biological samples. Herein, a unique microfluidic platform is reported for EV-protein fractionation based on the principle of size exclusion chromatography (SEC). Using a novel rapid (≈20 min) replica molding technique, a fritless microfluidic SEC device (µSEC) is fabricated using thiol-ene polymer (UV glue NOA81, Young's modulus ≈1 GPa) for high pressure (up to 6 bar) sample processing. Controlled on-chip nanoliter sample plug injection (600 nL) using a modified T-junction injector is first demonstrated with rapid flow switching response time (<1.5 s). Device performance is validated using fluorescent nanoparticles (50 nm), albumin, and breast cancer cells (MCF-7)-derived EVs. As a proof-of-concept for clinical applications, EVs are directly isolated from undiluted human platelet-poor plasma using µSEC and show distinct elution profiles between EVs and proteins based on nanoparticle particle analysis (NTA), Western blot and flow cytometry analysis. Overall, the optically transparent µSEC can be readily automated and integrated with EV detection assays for EVs manufacturing and clinical diagnostics.


Asunto(s)
Vesículas Extracelulares , Microfluídica , Proteínas Sanguíneas/metabolismo , Cromatografía en Gel , Vesículas Extracelulares/metabolismo , Humanos , Plasma
15.
Biosensors (Basel) ; 11(12)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34940266

RESUMEN

Incorporation of extracellular matrix (ECM) and hydrogel in microfluidic 3D cell culture platforms is important to create a physiological microenvironment for cell morphogenesis and to establish 3D co-culture models by hydrogel compartmentalization. Here, we describe a simple and scalable ECM patterning method for microfluidic cell cultures by achieving hydrogel confinement due to the geometrical expansion of channel heights (stepped height features) and capillary burst valve (CBV) effects. We first demonstrate a sequential "pillar-free" hydrogel patterning to form adjacent hydrogel lanes in enclosed microfluidic devices, which can be further multiplexed with one to two stepped height features. Next, we developed a novel "spheroid-in-gel" culture device that integrates (1) an on-chip hanging drop spheroid culture and (2) a single "press-on" hydrogel confinement step for rapid ECM patterning in an open-channel microarray format. The initial formation of breast cancer (MCF-7) spheroids was achieved by hanging a drop culture on a patterned polydimethylsiloxane (PDMS) substrate. Single spheroids were then directly encapsulated on-chip in individual hydrogel islands at the same positions, thus, eliminating any manual spheroid handling and transferring steps. As a proof-of-concept to perform a spheroid co-culture, endothelial cell layer (HUVEC) was formed surrounding the spheroid-containing ECM region for drug testing studies. Overall, this developed stepped height-based hydrogel patterning method is simple to use in either enclosed microchannels or open surfaces and can be readily adapted for in-gel cultures of larger 3D cellular spheroids or microtissues.


Asunto(s)
Hidrogeles , Microfluídica , Técnicas de Cultivo Tridimensional de Células , Esferoides Celulares
16.
Anal Chem ; 93(30): 10462-10468, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34289696

RESUMEN

Single-cell metabolite measurement remains highly challenging due to difficulties related to single cell isolation, metabolite detection, and identification of low levels of metabolites. Here, as a first step of the technological development, we propose a novel strategy integrating spiral inertial microfluidics and ion mobility mass spectrometry (IM-MS) for single-cell metabolite detection and identification. Cells in methanol suspension are inertially focused into a single stream in the spiral microchannel. This stream of separated cells is delivered to the nanoelectrospray needle to be lysed and ionized and subsequently analyzed in real time by IM-MS. This analytical system enables six to eight single-cell metabolic fingerprints to be collected per minute, including gas-phase collisional cross section (CCS) measurements as an additional molecular descriptor, giving increased confidence in metabolite identification. As a proof of concept, the metabolic profiles of three types of cancer cells (U2OS, HepG2, and HepG2.215) were successfully screened, and 19 distinct lipids species were identified with CCS value filtering. Furthermore, principal component analysis (PCA) showed differentiation of the three cancer cell lines, mainly due to cellular surface phospholipids. Taken together, our technology platform offers a simple and efficient method for single-cell lipid profiling, with additional ion mobility separation of lipids significantly improving the confidence toward identification of metabolites.


Asunto(s)
Espectrometría de Movilidad Iónica , Microfluídica , Humanos , Lípidos , Espectrometría de Masas , Metaboloma
17.
Commun Biol ; 4(1): 832, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215830

RESUMEN

Sialyl-Lewis x (sLex, CD15s) is a tetra-saccharide on the surface of leukocytes required for E-selectin-mediated rolling, a prerequisite for leukocytes to migrate out of the blood vessels. Here we show using flow cytometry that sLex expression on basophils and mast cell progenitors depends on fucosyltransferase 6 (FUT6). Using genetic association data analysis and qPCR, the cell type-specific defect was associated with single nucleotide polymorphisms (SNPs) in the FUT6 gene region (tagged by rs17855739 and rs778798), affecting coding sequence and/or expression level of the mRNA. Heterozygous individuals with one functional FUT6 gene harbor a mixed population of sLex+ and sLex- basophils, a phenomenon caused by random monoallelic expression (RME). Microfluidic assay demonstrated FUT6-deficient basophils rolling on E-selectin is severely impaired. FUT6 null alleles carriers exhibit elevated blood basophil counts and a reduced itch sensitivity against insect bites. FUT6-deficiency thus dampens the basophil-mediated allergic response in the periphery, evident also in lower IgE titers and reduced eosinophil counts.


Asunto(s)
Basófilos/metabolismo , Fucosiltransferasas/genética , Expresión Génica , Antígeno Sialil Lewis X/biosíntesis , Secuencia de Bases , Basófilos/citología , Células Cultivadas , Estudios de Cohortes , Selectina E/metabolismo , Fucosiltransferasas/deficiencia , Perfilación de la Expresión Génica/métodos , Humanos , Recuento de Leucocitos , Rodamiento de Leucocito/genética , Rodamiento de Leucocito/fisiología , Polimorfismo de Nucleótido Simple , Homología de Secuencia de Ácido Nucleico
18.
Front Cell Dev Biol ; 9: 706143, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34291056

RESUMEN

Elevated serum concentrations of leucine-rich α-2-glycoprotein (LRG1) have been reported in patients with inflammatory, autoimmune, and cardiovascular diseases. This study aims to investigate the role of LRG1 in endothelial activation. LRG1 in endothelial cells (ECs) of arteries and serum of patients with critical limb ischemia (CLI) was assessed by immunohistochemistry and ELISA, respectively. LRG1 expression in sheared and tumor necrosis factor-α (TNF-α)-treated ECs was analyzed. The mechanistic role of LRG1 in endothelial activation was studied in vitro. Plasma of 37-week-old Lrg1 -/- mice was used to investigate causality between LRG1 and tumor necrosis factor receptor 1 (TNFR1) shedding. LRG1 was highly expressed in ECs of stenotic but not normal arteries. LRG1 concentrations in serum of patients with CLI were elevated compared to healthy controls. LRG1 expression was shear dependent. It could be induced by TNF-α, and the induction of its expression was mediated by NF-κB activation. LRG1 inhibited TNF-α-induced activation of NF-κB signaling, expression of VCAM-1 and ICAM-1, and monocyte capture, firm adhesion, and transendothelial migration. Mechanistically, LRG1 exerted its function by causing the shedding of TNFR1 via the ALK5-SMAD2 pathway and the subsequent activation of ADAM10. Consistent with this mechanism, LRG1 and sTNFR1 concentrations were correlated in the serum of CLI patients. Causality between LRG1 and TNFR1 shedding was established by showing that Lrg1 -/- mice had lower plasma sTNFR1 concentrations than wild type mice. Our results demonstrate a novel role for LRG1 in endothelial activation and its potential therapeutic role in inflammatory diseases should be investigated further.

19.
Lab Chip ; 21(13): 2511-2523, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34042931

RESUMEN

Extracellular vesicles (EVs) are key mediators of communication among cells, and clinical utilities of EVs-based biomarkers remain limited due to difficulties in isolating EVs from whole blood reliably. We report a novel inertial-based microfluidic platform for direct isolation of nanoscale EVs (exosomes, 50 to 200 nm) and medium-sized EVs (microvesicles, 200 nm to 1 µm) from blood with high efficiency (three-fold increase in EV yield compared to ultracentrifugation). In a pilot clinical study of healthy (n = 5) and type 2 diabetes mellitus (T2DM, n = 9) subjects, we detected higher EV levels in T2DM patients (P < 0.05), and identified a subset of "high-risk" T2DM subjects with abnormally high (∼10-fold to 50-fold) amounts of platelet (CD41a+) or leukocyte-derived (CD45+) EVs. Our in vitro endothelial cell assay further revealed that EVs from "high-risk" T2DM subjects induced significantly higher vascular inflammation (ICAM-1 expression) (P < 0.05) as compared to healthy and non-"high-risk" T2DM subjects, reflecting a pro-inflammatory phenotype. Overall, the EV isolation tool is scalable, and requires less manual labour, cost and processing time. This enables further development of EV-based diagnostics, whereby a combined immunological and functional phenotyping strategy can potentially be used for rapid vascular risk stratification in T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Exosomas , Vesículas Extracelulares , Biomarcadores , Células Endoteliales , Humanos
20.
Lab Chip ; 21(12): 2359-2371, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33978037

RESUMEN

Mechanistic understanding of atherosclerosis is largely hampered by the lack of a suitable in vitro human arterial model that recapitulates the arterial wall structure, and the interplay between different cell types and the surrounding extracellular matrix (ECM). This work introduces a novel microfluidic endothelial cell (EC)-smooth muscle cell (SMC) 3D co-culture platform that replicates the structural and biological aspects of the human arterial wall for modeling early atherosclerosis. Using a modified surface tension-based ECM patterning method, we established a well-defined intima-media-like structure, and identified an ECM composition (collagen I and Matrigel mixture) that retains the SMCs in a quiescent and aligned state, characteristic of a healthy artery. Endothelial stimulation with cytokines (IL-1ß and TNFα) and oxidized low-density lipoprotein (oxLDL) was performed on-chip to study various early atherogenic events including endothelial inflammation (ICAM-1 expression), EC/SMC oxLDL uptake, SMC migration, and monocyte-EC adhesion. As a proof-of-concept for drug screening applications, we demonstrated the atheroprotective effects of vitamin D (1,25(OH)2D3) and metformin in mitigating cytokine-induced monocyte-EC adhesion and SMC migration. Overall, the developed arterial wall model facilitates quantitative and multi-factorial studies of EC and SMC phenotype in an atherogenic environment, and can be readily used as a platform technology to reconstitute multi-layered ECM tissue biointerfaces.


Asunto(s)
Aterosclerosis , Músculo Liso Vascular , Arterias , Movimiento Celular , Células Cultivadas , Humanos , Inflamación , Dispositivos Laboratorio en un Chip , Miocitos del Músculo Liso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...